B - Toll Gates

Time Limit: 2 sec / Memory Limit: 256 MB

配点 : 200

問題文

N + 1 個のマスが左右に一列に並んでいます. これらのマスには,左のマスから順に 0, 1, ..., N の番号が付けられています.

あなたは,最初マス X にいます. 隣り合うマスの間は自由に移動することができ,マス 0 またはマス N にたどり着くとゴールすることができます. ただし,i = 1, 2, ..., M について,マス A_i には料金所があり,そのためマス A_i に移動してくる際には 1 のコストがかかります. なお,マス 0,マス X,マス N には料金所がないことが保証されます.

ゴールするまでにかかるコストの最小値を求めてください.

制約

  • 1 \leq N \leq 100
  • 1 \leq M \leq 100
  • 1 \leq X \leq N - 1
  • 1 \leq A_1 < A_2 < ... < A_M \leq N - 1
  • A_i \neq X
  • 入力はすべて整数

入力

入力は以下の形式で標準入力から与えられる。

N M X
A_1 A_2 ... A_M

出力

ゴールするまでにかかるコストの最小値を出力せよ.


入力例 1

5 3 3
1 2 4

出力例 1

1

次のようにするのが最適です.

  • まず,マス 3 から,マス 4 へ移動する.このとき,マス 4 には料金所があるので,コスト 1 がかかる.
  • 次に,マス 4 から,マス 5 へ移動する.このときはコストはかからない.
  • マス 5 に到着したので,ゴールする.

このようにすると,コストは合計で 1 になります.


入力例 2

7 3 2
4 5 6

出力例 2

0

まったくコストがかからないこともあります.


入力例 3

10 7 5
1 2 3 4 6 8 9

出力例 3

3

Score : 200 points

Problem Statement

There are N + 1 squares arranged in a row, numbered 0, 1, ..., N from left to right.

Initially, you are in Square X. You can freely travel between adjacent squares. Your goal is to reach Square 0 or Square N. However, for each i = 1, 2, ..., M, there is a toll gate in Square A_i, and traveling to Square A_i incurs a cost of 1. It is guaranteed that there is no toll gate in Square 0, Square X and Square N.

Find the minimum cost incurred before reaching the goal.

Constraints

  • 1 \leq N \leq 100
  • 1 \leq M \leq 100
  • 1 \leq X \leq N - 1
  • 1 \leq A_1 < A_2 < ... < A_M \leq N
  • A_i \neq X
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

N M X
A_1 A_2 ... A_M

Output

Print the minimum cost incurred before reaching the goal.


Sample Input 1

5 3 3
1 2 4

Sample Output 1

1

The optimal solution is as follows:

  • First, travel from Square 3 to Square 4. Here, there is a toll gate in Square 4, so the cost of 1 is incurred.
  • Then, travel from Square 4 to Square 5. This time, no cost is incurred.
  • Now, we are in Square 5 and we have reached the goal.

In this case, the total cost incurred is 1.


Sample Input 2

7 3 2
4 5 6

Sample Output 2

0

We may be able to reach the goal at no cost.


Sample Input 3

10 7 5
1 2 3 4 6 8 9

Sample Output 3

3