D - 756

Time Limit: 2 sec / Memory Limit: 1024 MB

### 問題文

ここで、七五数とは約数をちょうど 75 個持つ正の整数です。

### 制約

• 1 \leq N \leq 100
• N は整数である。

N

### 出力

N! の約数であるような七五数の個数を出力せよ。

9

### 出力例 1

0

9! = 1 \times 2 \times ... \times 9 = 362880 の約数に七五数はありません。

10

### 出力例 2

1

10! = 3628800 の約数のうち、七五数であるのは 324001 個です。

100

### 出力例 3

543

Score : 400 points

### Problem Statement

You are given an integer N. Among the divisors of N! (= 1 \times 2 \times ... \times N), how many Shichi-Go numbers (literally "Seven-Five numbers") are there?

Here, a Shichi-Go number is a positive integer that has exactly 75 divisors.

### Note

When a positive integer A divides a positive integer B, A is said to a divisor of B. For example, 6 has four divisors: 1, 2, 3 and 6.

### Constraints

• 1 \leq N \leq 100
• N is an integer.

### Input

Input is given from Standard Input in the following format:

N

### Output

Print the number of the Shichi-Go numbers that are divisors of N!.

9

### Sample Output 1

0

There are no Shichi-Go numbers among the divisors of 9! = 1 \times 2 \times ... \times 9 = 362880.

10

### Sample Output 2

1

There is one Shichi-Go number among the divisors of 10! = 3628800: 32400.

100

543