C - +/- Rectangle

Time Limit: 2 sec / Memory Limit: 256 MB

### 問題文

• 行列は HW 列である。
• 行列の各要素は -10^9 以上 10^9 以下の整数である。
• 行列の全要素の総和は正の値である。
• どこから hw 列の部分長方形を取り出しても、部分長方形に含まれる全要素の総和は負の値である。

### 制約

• 1 ≤ h ≤ H ≤ 500
• 1 ≤ w ≤ W ≤ 500

### 入力

H W h w


### 出力

a_{11} ... a_{1W}
:
a_{H1} ... a_{HW}


### 入力例 1

3 3 2 2


### 出力例 1

Yes
1 1 1
1 -4 1
1 1 1


### 入力例 2

2 4 1 2


### 出力例 2

No


### 入力例 3

3 4 2 3


### 出力例 3

Yes
2 -5 8 7
3 -5 -4 -5
2 1 -1 7


Score : 700 points

### Problem Statement

You are given four integers: H, W, h and w (1 ≤ h ≤ H, 1 ≤ w ≤ W). Determine whether there exists a matrix such that all of the following conditions are held, and construct one such matrix if the answer is positive:

• The matrix has H rows and W columns.
• Each element of the matrix is an integer between -10^9 and 10^9 (inclusive).
• The sum of all the elements of the matrix is positive.
• The sum of all the elements within every subrectangle with h rows and w columns in the matrix is negative.

### Constraints

• 1 ≤ h ≤ H ≤ 500
• 1 ≤ w ≤ W ≤ 500

### Input

Input is given from Standard Input in the following format:

H W h w


### Output

If there does not exist a matrix that satisfies all of the conditions, print No.

Otherwise, print Yes in the first line, and print a matrix in the subsequent lines in the following format:

a_{11} ... a_{1W}
:
a_{H1} ... a_{HW}


Here, a_{ij} represents the (i,\ j) element of the matrix.

### Sample Input 1

3 3 2 2


### Sample Output 1

Yes
1 1 1
1 -4 1
1 1 1


The sum of all the elements of this matrix is 4, which is positive. Also, in this matrix, there are four subrectangles with 2 rows and 2 columns as shown below. For each of them, the sum of all the elements inside is -1, which is negative.

### Sample Input 2

2 4 1 2


### Sample Output 2

No


### Sample Input 3

3 4 2 3


### Sample Output 3

Yes
2 -5 8 7
3 -5 -4 -5
2 1 -1 7