F2 - Reachable Cells

Time Limit: 9 sec / Memory Limit: 1024 MB

配点 : 1500

問題文

問題 F と問題 F2 は同じ問題ですが、制約と実行時間制限が異なります。

N 行、横 N 列のマスからなる盤面があります。 上から i 行目、左から j 列目のマスをマス (i,j) とよびます。 それぞれのマスは、空である、もしくは、障害物が置かれている、のいずれかの状態です。 また、すべての空であるマスには数字が書かれています。 A_{i,j}= 1, 2, ... 9 のとき、マス (i,j) は空で、そこに書かれている数字は A_{i,j} です。 A_{i,j}= # のとき、マス (i,j) には障害物が置かれています。

マス X からマス Y に到達可能であるとは、以下の条件をすべて満たすことを意味します。

  • マス X, Y は相異なる。
  • マス X, Y はどちらも空である。
  • マス X から出発し、右または下に隣接する空マスへの移動を繰り返すことで、マス Y に到達できる。

マス X からマス Y に到達可能であるようなマスの組 (X,Y) すべてについて、マス X にかかれている数字とマス Y にかかれている数字の積を求めたときの、その総和を求めてください。

制約

  • 1 \leq N \leq 1500
  • A_{i,j}1, 2, ... 9, # のうちいずれかの文字である。

入力

入力は以下の形式で標準入力から与えられる。

N
A_{1,1}A_{1,2}...A_{1,N}
A_{2,1}A_{2,2}...A_{2,N}
:
A_{N,1}A_{N,2}...A_{N,N}

出力

マス X からマス Y に到達可能であるようなマスの組 (X,Y) すべてについて、マス X にかかれている数字とマス Y にかかれている数字の積を求めたときの、その総和を出力せよ。


入力例 1

2
11
11

出力例 1

5

マス X からマス Y に到達可能であるようなマスの組 (X,Y) は、以下の 5 通りあります。

  • X=(1,1), Y=(1,2)
  • X=(1,1), Y=(2,1)
  • X=(1,1), Y=(2,2)
  • X=(1,2), Y=(2,2)
  • X=(2,1), Y=(2,2)

どの組についても、X にかかれている数字と Y にかかれている数字の積は 1 なので、答えは 5 になります。


入力例 2

4
1111
11#1
1#11
1111

出力例 2

47

入力例 3

10
76##63##3#
8445669721
75#9542133
3#285##445
749632##89
2458##9515
5952578#77
1#3#44196#
4355#99#1#
#298#63587

出力例 3

36065

入力例 4

10
4177143673
7#########
5#1716155#
6#4#####5#
2#3#597#6#
6#9#8#3#5#
5#2#899#9#
1#6#####6#
6#5359657#
5#########

出力例 4

6525

Score : 1500 points

Problem Statement

Problem F and F2 are the same problem, but with different constraints and time limits.

We have a board divided into N horizontal rows and N vertical columns of square cells. The cell at the i-th row from the top and the j-th column from the left is called Cell (i,j). Each cell is either empty or occupied by an obstacle. Also, each empty cell has a digit written on it. If A_{i,j}= 1, 2, ..., or 9, Cell (i,j) is empty and the digit A_{i,j} is written on it. If A_{i,j}= #, Cell (i,j) is occupied by an obstacle.

Cell Y is reachable from cell X when the following conditions are all met:

  • Cells X and Y are different.
  • Cells X and Y are both empty.
  • One can reach from Cell X to Cell Y by repeatedly moving right or down to an adjacent empty cell.

Consider all pairs of cells (X,Y) such that cell Y is reachable from cell X. Find the sum of the products of the digits written on cell X and cell Y for all of those pairs.

Constraints

  • 1 \leq N \leq 1500
  • A_{i,j} is one of the following characters: 1, 2, ... 9 and #.

Input

Input is given from Standard Input in the following format:

N
A_{1,1}A_{1,2}...A_{1,N}
A_{2,1}A_{2,2}...A_{2,N}
:
A_{N,1}A_{N,2}...A_{N,N}

Output

Print the sum of the products of the digits written on cell X and cell Y for all pairs (X,Y) such that cell Y is reachable from cell X.


Sample Input 1

2
11
11

Sample Output 1

5

There are five pairs of cells (X,Y) such that cell Y is reachable from cell X, as follows:

  • X=(1,1), Y=(1,2)
  • X=(1,1), Y=(2,1)
  • X=(1,1), Y=(2,2)
  • X=(1,2), Y=(2,2)
  • X=(2,1), Y=(2,2)

The product of the digits written on cell X and cell Y is 1 for all of those pairs, so the answer is 5.


Sample Input 2

4
1111
11#1
1#11
1111

Sample Output 2

47

Sample Input 3

10
76##63##3#
8445669721
75#9542133
3#285##445
749632##89
2458##9515
5952578#77
1#3#44196#
4355#99#1#
#298#63587

Sample Output 3

36065

Sample Input 4

10
4177143673
7#########
5#1716155#
6#4#####5#
2#3#597#6#
6#9#8#3#5#
5#2#899#9#
1#6#####6#
6#5359657#
5#########

Sample Output 4

6525