F - Distance Sums

Time Limit: 2 sec / Memory Limit: 1024 MB

配点 : 900

問題文

長さ N の数列 D_1, D_2, ..., D_N が与えられます。 D_i の値はすべて異なります。 以下の条件を満たす N 頂点の木は存在するでしょうか?

  • 各頂点には 1,2,..., N の番号が付けられている
  • 各辺には 1,2,..., N-1 の番号が付けられていて、i 番目の辺は頂点 u_iv_i をつないでいる
  • 各頂点 i に対して、i から他の頂点までの距離の和は D_i である。ただし、各辺の長さは 1 であるものとする。

条件を満たす木が存在する場合、1 つ構築してください。

制約

  • 2 \leq N \leq 100000
  • 1 \leq D_i \leq 10^{12}
  • D_i はすべて異なる

入力

入力は以下の形式で標準入力から与えられる.

N
D_1
D_2
:
D_N

出力

条件を満たす N 頂点の木が存在しない場合、-1 と出力してください。

条件を満たす N 頂点の木が存在する場合、N-1 行出力してください。 i 行目には u_i,v_i を空白区切りで出力してください。 複数の木が条件を満たす場合、どれを出力しても構いません。


入力例 1

7
10
15
13
18
11
14
19

出力例 1

1 2
1 3
1 5
3 4
5 6
6 7

次のような木が条件を満たします。


入力例 2

2
1
2

出力例 2

-1

入力例 3

15
57
62
47
45
42
74
90
75
54
50
66
63
77
87
51

出力例 3

1 10
1 11
2 8
2 15
3 5
3 9
4 5
4 10
5 15
6 12
6 14
7 13
9 12
11 13

Score : 900 points

Problem Statement

You are given a sequence D_1, D_2, ..., D_N of length N. The values of D_i are all distinct. Does a tree with N vertices that satisfies the following conditions exist?

  • The vertices are numbered 1,2,..., N.
  • The edges are numbered 1,2,..., N-1, and Edge i connects Vertex u_i and v_i.
  • For each vertex i, the sum of the distances from i to the other vertices is D_i, assuming that the length of each edge is 1.

If such a tree exists, construct one such tree.

Constraints

  • 2 \leq N \leq 100000
  • 1 \leq D_i \leq 10^{12}
  • D_i are all distinct.

Input

Input is given from Standard Input in the following format:

N
D_1
D_2
:
D_N

Output

If a tree with n vertices that satisfies the conditions does not exist, print -1.

If a tree with n vertices that satisfies the conditions exist, print n-1 lines. The i-th line should contain u_i and v_i with a space in between. If there are multiple trees that satisfy the conditions, any such tree will be accepted.


Sample Input 1

7
10
15
13
18
11
14
19

Sample Output 1

1 2
1 3
1 5
3 4
5 6
6 7

The tree shown below satisfies the conditions.


Sample Input 2

2
1
2

Sample Output 2

-1

Sample Input 3

15
57
62
47
45
42
74
90
75
54
50
66
63
77
87
51

Sample Output 3

1 10
1 11
2 8
2 15
3 5
3 9
4 5
4 10
5 15
6 12
6 14
7 13
9 12
11 13