E - キャンディーとN人の子供 / Children and Candies

Time Limit: 4 sec / Memory Limit: 256 MB

配点 : 800

問題文

競プロ幼稚園には1Nの番号がついたN人の子供がいます。えび先生は、区別できないC個のキャンディーを子供たちに分配することにしました。子供iはしゃぎ度x_iの時、キャンディーをa個もらうと子供iうれしさx_i^aになります。幼稚園の活発度N人の子供たちのうれしさになります。各子供にキャンディーを非負整数個配ってC個配りきる方法それぞれに対して幼稚園の活発度を計算して、その総和を子供たちのはしゃぎ度x_1,..,x_Nの関数とみてf(x_1,..,x_N)とおきます。A_i,B_i (1≦i≦N)が与えられるので、 10^9+7で割ったあまりを求めてください。

制約

  • 1≦N≦400
  • 1≦C≦400
  • 1≦A_i≦B_i≦400 (1≦i≦N)

部分点

  • A_i=B_i (1≦i≦N) を満たすデータセットに正解した場合は、部分点として400 点が与えられる。

入力

入力は以下の形式で標準入力から与えられる。

N C
A_1 A_2 ... A_N
B_1 B_2 ... B_N

出力

の値を10^9+7で割ったあまりを出力せよ。


入力例 1

2 3
1 1
1 1

出力例 1

4

A_i=B_iなので部分点の条件を満たします。 子供1,2はしゃぎ度が共に1のもの(f(1,1))を考えればよく、この時、

  • 子供10個,子供23個のキャンディーをあげると、幼稚園の活発度1^0*1^3=1
  • 子供11個,子供22個のキャンディーをあげると、幼稚園の活発度1^1*1^2=1
  • 子供12個,子供21個のキャンディーをあげると、幼稚園の活発度1^2*1^1=1
  • 子供13個,子供20個のキャンディーをあげると、幼稚園の活発度1^3*1^0=1

従ってf(1,1)=1+1+1+1=4となり、fを足し合わせた答えは4です。


入力例 2

1 2
1
3

出力例 2

14

子供が一人なので、子供1うれしさ幼稚園の活発度になります。また、キャンディの配り方は2つとも子供1にあげる1通りしかないため、この時の幼稚園の活発度fの値に等しくなります。

  • 子供1はしゃぎ度1の時、f(1)=1^2=1
  • 子供1はしゃぎ度2の時、f(2)=2^2=4
  • 子供1はしゃぎ度3の時、f(3)=3^2=9

従って答えは1+4+9=14となります。


入力例 3

2 3
1 1
2 2

出力例 3

66

f(1,1)=4 , f(1,2)=15 , f(2,1)=15 , f(2,2)=32 となることがわかるので、答えは4+15+15+32=66になります。


入力例 4

4 8
3 1 4 1
3 1 4 1

出力例 4

421749

部分点の条件を満たします。


入力例 5

3 100
7 6 5
9 9 9

出力例 5

139123417

Score : 800 points

Problem Statement

12:17 (UTC): The sample input 1 and 2 were swapped. The error is now fixed. We are very sorry for your inconvenience.

There are N children in AtCoder Kindergarten, conveniently numbered 1 through N. Mr. Evi will distribute C indistinguishable candies to the children.

If child i is given a candies, the child's happiness will become x_i^a, where x_i is the child's excitement level. The activity level of the kindergarten is the product of the happiness of all the N children.

For each possible way to distribute C candies to the children by giving zero or more candies to each child, calculate the activity level of the kindergarten. Then, calculate the sum over all possible way to distribute C candies. This sum can be seen as a function of the children's excitement levels x_1,..,x_N, thus we call it f(x_1,..,x_N).

You are given integers A_i,B_i (1≦i≦N). Find modulo 10^9+7.

Constraints

  • 1≦N≦400
  • 1≦C≦400
  • 1≦A_i≦B_i≦400 (1≦i≦N)

Partial Score

  • 400 points will be awarded for passing the test set satisfying A_i=B_i (1≦i≦N).

Input

The input is given from Standard Input in the following format:

N C
A_1 A_2 ... A_N
B_1 B_2 ... B_N

Output

Print the value of modulo 10^9+7.


Sample Input 1

2 3
1 1
1 1

Sample Output 1

4

This case is included in the test set for the partial score, since A_i=B_i. We only have to consider the sum of the activity level of the kindergarten where the excitement level of both child 1 and child 2 are 1 (f(1,1)).

  • If child 1 is given 0 candy, and child 2 is given 3 candies, the activity level of the kindergarten is 1^0*1^3=1.
  • If child 1 is given 1 candy, and child 2 is given 2 candies, the activity level of the kindergarten is 1^1*1^2=1.
  • If child 1 is given 2 candies, and child 2 is given 1 candy, the activity level of the kindergarten is 1^2*1^1=1.
  • If child 1 is given 3 candies, and child 2 is given 0 candy, the activity level of the kindergarten is 1^3*1^0=1.

Thus, f(1,1)=1+1+1+1=4, and the sum over all f is also 4.


Sample Input 2

1 2
1
3

Sample Output 2

14

Since there is only one child, child 1's happiness itself will be the activity level of the kindergarten. Since the only possible way to distribute 2 candies is to give both candies to child 1, the activity level in this case will become the value of f.

  • When the excitement level of child 1 is 1, f(1)=1^2=1.
  • When the excitement level of child 1 is 2, f(2)=2^2=4.
  • When the excitement level of child 1 is 3, f(3)=3^2=9.

Thus, the answer is 1+4+9=14.


Sample Input 3

2 3
1 1
2 2

Sample Output 3

66

Since it can be seen that f(1,1)=4 , f(1,2)=15 , f(2,1)=15 , f(2,2)=32, the answer is 4+15+15+32=66.


Sample Input 4

4 8
3 1 4 1
3 1 4 1

Sample Output 4

421749

This case is included in the test set for the partial score.


Sample Input 5

3 100
7 6 5
9 9 9

Sample Output 5

139123417